NCERT Solutions Class 11 Maths Chapter 3 Trigonometric Functions

Last Updated: August 25, 2024Categories: NCERT Solutions

NCERT Solutions for Class 11 Maths Chapter 3 – Trigonometric Functions

NCERT Solutions For Class 11 Maths Chapter 3 Trigonometric Functions has many formulas and theorems Hence we have designed the steps by steps method to solve all the questions. NCERT Solutions for Class 11 Maths Chapter 3 are comprehensive format and highly reliable to enhance problem-solving skills to score more marks in the examination. Trigonometry is an important part of Class 11 Maths that involves studying various relations between sides and angles of triangles.

This chapter contains 3 exercises along with a miscellaneous exercise.

NCERT Solutions for Class 11 Chapter 3

These solutions are helpful for the students to get an idea of how to answer the questions from the board exam perspective

NCERT Solutions For Class 11 Maths Chapter 3 Trigonometric Functions Exercise 3.1

The Exercice 3.1 chapter contains questions revolving around Trigonometric functions.

  1. Introduction
  2. Angles
    1. Degree measure
    2. Radian measure
    3. Relation between radian and real numbers
    4. Relation between degree and radian

NCERT Solutions for Class 11 Chapter 3 Ex 3.1

1. Find the radian measures corresponding to the following degree measures:

(i) 25° (ii) – 47° 30′ (iii) 240° (iv) 520°

Solution:

NCERT Solutions for Class 11 Chapter 3 Ex 3.1 Image 1

NCERT Solutions for Class 11 Chapter 3 Ex 3.1 Image 2

NCERT Solutions for Class 11 Chapter 3 Ex 3.1 Image 3

(iv) 520°

NCERT Solutions for Class 11 Chapter 3 Ex 3.1 Image 4

2. Find the degree measures corresponding to the following radian measures (Use π = 22/7).

(i) 11/16

(ii) -4

(iii) 5π/3

(iv) 7π/6

Solution:

(i) 11/16

Here, π radian = 180°

NCERT Solutions for Class 11 Chapter 3 Ex 3.1 Image 5

(ii) -4

Here, π radian = 180°

NCERT Solutions for Class 11 Chapter 3 Ex 3.1 Image 6

(iii) 5π/3

Here, π radian = 180°

NCERT Solutions for Class 11 Chapter 3 Ex 3.1 Image 7

We get

= 300o

(iv) 7π/6

Here, π radian = 180°

NCERT Solutions for Class 11 Chapter 3 Ex 3.1 Image 8

We get

= 210o

3. A wheel makes 360 revolutions in one minute. Through how many radians does it turn in one second?

Solution:

It is given that

No. of revolutions made by the wheel in

1 minute = 360

1 second = 360/60 = 6

We know that

The wheel turns an angle of 2π radian in one complete revolution.

In 6 complete revolutions, it will turn an angle of 6 × 2π radian = 12 π radian

Therefore, in one second, the wheel turns at an angle of 12π radian.

4. Find the degree measure of the angle subtended at the centre of a circle of radius 100 cm by an arc of length 22 cm (Use π = 22/7).

Solution:

NCERT Solutions for Class 11 Chapter 3 Ex 3.1 Image 9

5. In a circle of diameter 40 cm, the length of a chord is 20 cm. Find the length of the minor arc of the chord.

Solution:

The dimensions of the circle are

Diameter = 40 cm

Radius = 40/2 = 20 cm

Consider AB as the chord of the circle, i.e., length = 20 cm

NCERT Solutions for Class 11 Chapter 3 Ex 3.1 Image 10

In ΔOAB,

Radius of circle = OA = OB = 20 cm

Similarly AB = 20 cm

Hence, ΔOAB is an equilateral triangle.

θ = 60° = π/3 radian

In a circle of radius r unit, if an arc of length l unit subtends an angle θ radian at the centre,

We get θ = 1/r

NCERT Solutions for Class 11 Chapter 3 Ex 3.1 Image 11

Therefore, the length of the minor arc of the chord is 20π/3 cm.

6. If in two circles, arcs of the same length subtend angles 60° and 75° at the centre, find the ratio of their radii.

Solution:

NCERT Solutions for Class 11 Chapter 3 Ex 3.1 Image 12

7. Find the angle in the radian through which a pendulum swings if its length is 75 cm and the tip describes an arc of length

(i) 10 cm (ii) 15 cm (iii) 21 cm

Solution:

In a circle of radius r unit, if an arc of length l unit subtends an angle θ radian at the centre, then θ = 1/r

We know that r = 75 cm

(i) l = 10 cm

So we get

θ = 10/75 radian

By further simplification,

θ = 2/15 radian

(ii) l = 15 cm

So, we get

θ = 15/75 radian

By further simplification,

θ = 1/5 radian

(iii) l = 21 cm

So, we get

θ = 21/75 radian

By further simplification,

θ = 7/25 radian

NCERT Solutions For Class 11 Maths Chapter 3 Trigonometric Functions Exercise 3.2

NCERT Solutions for Class 11 Chapter 3 Ex 3.2

Prove that:

1.

NCERT Solutions for Class 11 Chapter 3 Ex 3.3 Image 1

Solution:

NCERT Solutions for Class 11 Chapter 3 Ex 3.3 Image 2

2.

NCERT Solutions for Class 11 Chapter 3 Ex 3.3 Image 3

Solution:

NCERT Solutions for Class 11 Chapter 3 Ex 3.3 Image 4

Here

= 1/2 + 4/4

= 1/2 + 1

= 3/2

= RHS

3.

NCERT Solutions for Class 11 Chapter 3 Ex 3.3 Image 5

Solution:

NCERT Solutions for Class 11 Chapter 3 Ex 3.3 Image 6

4.

NCERT Solutions for Class 11 Chapter 3 Ex 3.3 Image 7

Solution:

NCERT Solutions for Class 11 Chapter 3 Ex 3.3 Image 8

NCERT Solutions for Class 11 Chapter 3 Ex 3.3 Image 9

5. Find the value of:

(i) sin 75o

(ii) tan 15o

Solution:

NCERT Solutions for Class 11 Chapter 3 Ex 3.3 Image 10

(ii) tan 15°

It can be written as

= tan (45° – 30°)

Using formula

NCERT Solutions for Class 11 Chapter 3 Ex 3.3 Image 11

NCERT Solutions for Class 11 Chapter 3 Ex 3.3 Image 12

Prove the following:

6.

NCERT Solutions for Class 11 Chapter 3 Ex 3.3 Image 13

Solution:

NCERT Solutions for Class 11 Chapter 3 Ex 3.3 Image 14

NCERT Solutions for Class 11 Chapter 3 Ex 3.3 Image 15

7.

NCERT Solutions for Class 11 Chapter 3 Ex 3.3 Image 16

Solution:

NCERT Solutions for Class 11 Chapter 3 Ex 3.3 Image 17

NCERT Solutions for Class 11 Chapter 3 Ex 3.3 Image 18

8.

NCERT Solutions for Class 11 Chapter 3 Ex 3.3 Image 19

Solution:

NCERT Solutions for Class 11 Chapter 3 Ex 3.3 Image 20

9.

NCERT Solutions for Class 11 Chapter 3 Ex 3.3 Image 21

Solution:

Consider

NCERT Solutions for Class 11 Chapter 3 Ex 3.3 Image 22

It can be written as

= sin x cos x (tan x + cot x)

So we get

NCERT Solutions for Class 11 Chapter 3 Ex 3.3 Image 23

10. sin (n + 1)x sin (n + 2)x + cos (n + 1)x cos (n + 2)x = cos x

Solution:

LHS = sin (n + 1)x sin (n + 2)x + cos (n + 1)x cos (n + 2)x

NCERT Solutions for Class 11 Chapter 3 Ex 3.3 Image 24

11.

NCERT Solutions for Class 11 Chapter 3 Ex 3.3 Image 25

Solution:

Consider

NCERT Solutions for Class 11 Chapter 3 Ex 3.3 Image 26

Using the formula

NCERT Solutions for Class 11 Chapter 3 Ex 3.3 Image 27

12. sin2 6x – sin2 4x = sin 2x sin 10x

Solution:

NCERT Solutions for Class 11 Chapter 3 Ex 3.3 Image 28

NCERT Solutions for Class 11 Chapter 3 Ex 3.3 Image 29

13. cos2 2x – cos2 6x = sin 4x sin 8x

Solution:

NCERT Solutions for Class 11 Chapter 3 Ex 3.3 Image 30

We get

= [2 cos 4x cos (-2x)] [-2 sin 4x sin (-2x)]

It can be written as

= [2 cos 4x cos 2x] [–2 sin 4x (–sin 2x)]

So we get

= (2 sin 4x cos 4x) (2 sin 2x cos 2x)

= sin 8x sin 4x

= RHS

14. sin 2x + 2sin 4x + sin 6x = 4cos2 x sin 4x

Solution:

NCERT Solutions for Class 11 Chapter 3 Ex 3.3 Image 31

By further simplification

= 2 sin 4x cos (– 2x) + 2 sin 4x

It can be written as

= 2 sin 4x cos 2x + 2 sin 4x

Taking common terms

= 2 sin 4x (cos 2x + 1)

Using the formula

= 2 sin 4x (2 cos2 x – 1 + 1)

We get

= 2 sin 4x (2 cos2 x)

= 4cos2 x sin 4x

= R.H.S.

15. cot 4x (sin 5x + sin 3x) = cot x (sin 5x – sin 3x)

Solution:

Consider

LHS = cot 4x (sin 5x + sin 3x)

It can be written as

NCERT Solutions for Class 11 Chapter 3 Ex 3.3 Image 32

Using the formula

NCERT Solutions for Class 11 Chapter 3 Ex 3.3 Image 33

= 2 cos 4x cos x

Hence, LHS = RHS.

16.

NCERT Solutions for Class 11 Chapter 3 Ex 3.3 Image 34

Solution:

Consider

NCERT Solutions for Class 11 Chapter 3 Ex 3.3 Image 35

Using the formula

NCERT Solutions for Class 11 Chapter 3 Ex 3.3 Image 36

17.

NCERT Solutions for Class 11 Chapter 3 Ex 3.3 Image 37

Solution:

NCERT Solutions for Class 11 Chapter 3 Ex 3.3 Image 28

NCERT Solutions for Class 11 Chapter 3 Ex 3.3 Image 39

18.

NCERT Solutions for Class 11 Chapter 3 Ex 3.3 Image 40

Solution:

NCERT Solutions for Class 11 Chapter 3 Ex 3.3 Image 41

19.

NCERT Solutions for Class 11 Chapter 3 Ex 3.3 Image 42

Solution:

NCERT Solutions for Class 11 Chapter 3 Ex 3.3 Image 43

20.

NCERT Solutions for Class 11 Chapter 3 Ex 3.3 Image 44

Solution:

NCERT Solutions for Class 11 Chapter 3 Ex 3.3 Image 45

NCERT Solutions for Class 11 Chapter 3 Ex 3.3 Image 46

21.

NCERT Solutions for Class 11 Chapter 3 Ex 3.3 Image 47

Solution:

NCERT Solutions for Class 11 Chapter 3 Ex 3.3 Image 48

NCERT Solutions for Class 11 Chapter 3 Ex 3.3 Image 49

22. cot x cot 2x – cot 2x cot 3x – cot 3x cot x = 1

Solution:

NCERT Solutions for Class 11 Chapter 3 Ex 3.3 Image 50

23.

NCERT Solutions for Class 11 Chapter 3 Ex 3.3 Image 51

Solution:

Consider

LHS = tan 4x = tan 2(2x)

By using the formula

NCERT Solutions for Class 11 Chapter 3 Ex 3.3 Image 52

NCERT Solutions for Class 11 Chapter 3 Ex 3.3 Image 53

24. cos 4x = 1 – 8sin2 x cos2 x

Solution:

Consider

LHS = cos 4x

We can write it as

= cos 2(2x)

Using the formula cos 2A = 1 – 2 sin2 A

= 1 – 2 sin2 2x

Again by using the formula sin2A = 2sin A cos A

= 1 – 2(2 sin x cos x) 2

So we get

= 1 – 8 sin2x cos2x

= R.H.S.

25. cos 6x = 32 cos6 x – 48 cos4 x + 18 cos2 x – 1

Solution:

Consider

L.H.S. = cos 6x

It can be written as

= cos 3(2x)

Using the formula cos 3A = 4 cos3 A – 3 cos A

= 4 cos3 2x – 3 cos 2x

Again by using formula cos 2x = 2 cos2 x – 1

= 4 [(2 cos2 x – 1)3 – 3 (2 cos2 x – 1)

By further simplification

= 4 [(2 cos2 x) 3 – (1)3 – 3 (2 cos2 x) 2 + 3 (2 cos2 x)] – 6cos2 x + 3

We get

= 4 [8cos6x – 1 – 12 cos4x + 6 cos2x] – 6 cos2x + 3

By multiplication

= 32 cos6x – 4 – 48 cos4x + 24 cos2 x – 6 cos2x + 3

On further calculation

= 32 cos6x – 48 cos4x + 18 cos2x – 1

= R.H.S.

NCERT Solutions For Class 11 Maths Chapter 3 Trigonometric Functions Exercise 3.4

The Exercice 3.4 chapter contains questions revolving around trigonometric equations. Equations involving trigonometric functions of a variable are called trigonometric equations.

NCERT Solutions for Class 11 Chapter 3 Ex 3.4

1. tan x = √3

Solution:

NCERT Solutions for Class 11 Chapter 3 Ex 3.4 Image 1

2. sec x = 2

Solution:

NCERT Solutions for Class 11 Chapter 3 Ex 3.4 Image 2

NCERT Solutions for Class 11 Chapter 3 Ex 3.4 Image 3

3. cot x = – √3

Solution:

NCERT Solutions for Class 11 Chapter 3 Ex 3.4 Image 4

NCERT Solutions for Class 11 Chapter 3 Ex 3.4 Image 5

4. cosec x = – 2

Solution:

NCERT Solutions for Class 11 Chapter 3 Ex 3.4 Image 6

NCERT Solutions for Class 11 Chapter 3 Ex 3.4 Image 7

Find the general solution for each of the following equations:

5. cos 4x = cos 2x

Solution:

NCERT Solutions for Class 11 Chapter 3 Ex 3.4 Image 8

6. cos 3x + cos x – cos 2x = 0

Solution:

NCERT Solutions for Class 11 Chapter 3 Ex 3.4 Image 9

7. sin 2x + cos x = 0

Solution:

It is given that

sin 2x + cos x = 0

We can write it as

2 sin x cos x + cos x = 0

cos x (2 sin x + 1) = 0

cos x = 0 or 2 sin x + 1 = 0

Let cos x = 0

NCERT Solutions for Class 11 Chapter 3 Ex 3.4 Image 10

8. sec2 2x = 1 – tan 2x

Solution:

It is given that

sec2 2x = 1 – tan 2x

We can write it as

1 + tan2 2x = 1 – tan 2x

tan2 2x + tan 2x = 0

Taking common terms

tan 2x (tan 2x + 1) = 0

Here

tan 2x = 0 or tan 2x + 1 = 0

If tan 2x = 0

tan 2x = tan 0

We get

2x = nπ + 0, where n ∈ Z

x = nπ/2, where n ∈ Z

tan 2x + 1 = 0

We can write it as

tan 2x = – 1

So we get

NCERT Solutions for Class 11 Chapter 3 Ex 3.4 Image 11

Here

2x = nπ + 3π/4, where n ∈ Z

x = nπ/2 + 3π/8, where n ∈ Z

Hence, the general solution is nπ/2 or nπ/2 + 3π/8, n ∈ Z.

9. sin x + sin 3x + sin 5x = 0

Solution:

It is given that

sin x + sin 3x + sin 5x = 0

We can write it as

(sin x + sin 5x) + sin 3x = 0

Using the formula

NCERT Solutions for Class 11 Chapter 3 Ex 3.4 Image 12

By further calculation

2 sin 3x cos (-2x) + sin 3x = 0

It can be written as

2 sin 3x cos 2x + sin 3x = 0

By taking out the common terms

sin 3x (2 cos 2x + 1) = 0

Here

sin 3x = 0 or 2 cos 2x + 1 = 0

If sin 3x = 0

3x = nπ, where n ∈ Z

We get

x = nπ/3, where n ∈ Z

If 2 cos 2x + 1 = 0

cos 2x = – 1/2

By further simplification

= – cos π/3

= cos (π – π/3)

So we get

cos 2x = cos 2π/3

Here

NCERT Solutions for Class 11 Chapter 3 Ex 3.4 Image 13

NCERT Solutions For Class 11 Maths Chapter 3 Trigonometric Functions Exercise : Miscellaneous

NCERT Solutions for Class 11 Chapter 3 Miscellaneous Ex

Prove that:

1.

NCERT Solutions for Class 11 Chapter 3 Miscellaneous Ex Image 1

Solution:

NCERT Solutions for Class 11 Chapter 3 Miscellaneous Ex Image 2

NCERT Solutions for Class 11 Chapter 3 Miscellaneous Ex Image 3

We get

NCERT Solutions for Class 11 Chapter 3 Miscellaneous Ex Image 4

= 0

= RHS

2. (sin 3x + sin x) sin x + (cos 3x – cos x) cos x = 0

Solution:

Consider

LHS = (sin 3x + sin x) sin x + (cos 3x – cos x) cos x

By further calculation,

= sin 3x sin x + sin2 x + cos 3x cos x – cos2 x

Taking out the common terms,

= cos 3x cos x + sin 3x sin x – (cos2 x – sin2 x)

Using the formula

cos (A – B) = cos A cos B + sin A sin B

= cos (3x – x) – cos 2x

So, we get

= cos 2x – cos 2x

= 0

= RHS

3.

NCERT Solutions for Class 11 Chapter 3 Miscellaneous Ex Image 5

Solution:

Consider

LHS = (cos x + cos y) 2 + (sin x – sin y) 2

By expanding using the formula, we get

= cos2 x + cos2 y + 2 cos x cos y + sin2 x + sin2 y – 2 sin x sin y

Grouping the terms,

= (cos2 x + sin2 x) + (cos2 y + sin2 y) + 2 (cos x cos y – sin x sin y)

Using the formula cos (A + B) = (cos A cos B – sin A sin B)

= 1 + 1 + 2 cos (x + y)

By further calculation,

= 2 + 2 cos (x + y)

Taking 2 as common

= 2 [1 + cos (x + y)]

From the formula cos 2A = 2 cos2 A – 1

NCERT Solutions for Class 11 Chapter 3 Miscellaneous Ex Image 6

4.

NCERT Solutions for Class 11 Chapter 3 Miscellaneous Ex Image 7

Solution:

LHS = (cos x – cos y) 2 + (sin x – sin y) 2

By expanding using the formula,

= cos2 x + cos2 y – 2 cos x cos y + sin2 x + sin2 y – 2 sin x sin y

Grouping the terms,

= (cos2 x + sin2 x) + (cos2 y + sin2 y) – 2 (cos x cos y + sin x sin y)

Using the formula cos (A – B) = cos A cos B + sin A sin B

= 1 + 1 – 2 [cos (x – y)]

By further calculation,

= 2 [1 – cos (x – y)]

From formula cos 2A = 1 – 2 sin2 A

NCERT Solutions for Class 11 Chapter 3 Miscellaneous Ex Image 8

5. sin x + sin 3x + sin 5x + sin 7x = 4 cos x cos 2x sin 4x

Solution:

NCERT Solutions for Class 11 Chapter 3 Miscellaneous Ex Image 9

NCERT Solutions for Class 11 Chapter 3 Miscellaneous Ex Image 10

6.

NCERT Solutions for Class 11 Chapter 3 Miscellaneous Ex Image 11

Solution:

NCERT Solutions for Class 11 Chapter 3 Miscellaneous Ex Image 12

7.

NCERT Solutions for Class 11 Chapter 3 Miscellaneous Ex Image 13

Solution:

NCERT Solutions for Class 11 Chapter 3 Miscellaneous Ex Image 14

NCERT Solutions for Class 11 Chapter 3 Miscellaneous Ex Image 15

NCERT Solutions for Class 11 Chapter 3 Miscellaneous Ex Image 16

8. Find sin x/2, cos x/2 and tan x/2 in each of the following.

NCERT Solutions for Class 11 Chapter 3 Miscellaneous Ex Image 17

Solution:

NCERT Solutions for Class 11 Chapter 3 Miscellaneous Ex Image 18

cos x = -3/5

From the formula,

NCERT Solutions for Class 11 Chapter 3 Miscellaneous Ex Image 19

NCERT Solutions for Class 11 Chapter 3 Miscellaneous Ex Image 20

NCERT Solutions for Class 11 Chapter 3 Miscellaneous Ex Image 21

9. cos x = -1/3, x in quadrant III

Solution:

NCERT Solutions for Class 11 Chapter 3 Miscellaneous Ex Image 22

NCERT Solutions for Class 11 Chapter 3 Miscellaneous Ex Image 23

NCERT Solutions for Class 11 Chapter 3 Miscellaneous Ex Image 24

10. sin x = 1/4, x in quadrant II

Solution:

NCERT Solutions for Class 11 Chapter 3 Miscellaneous Ex Image 25

NCERT Solutions for Class 11 Chapter 3 Miscellaneous Ex Image 26

NCERT Solutions for Class 11 Chapter 3 Miscellaneous Ex Image 27

NCERT Solutions for Class 11 Chapter 3 Miscellaneous Ex Image 28

NCERT Solutions for Class 11 Chapter 3 Miscellaneous Ex Image 29

latest video

news via inbox

Nulla turp dis cursus. Integer liberos  euismod pretium faucibua

Leave A Comment

you might also like