NCERT Solutions for Class 12 Maths Chapter 11 Three Dimensional Geometry

Last Updated: September 3, 2024Categories: NCERT Solutions

NCERT Solutions Class 12 Maths Chapter 11 Three Dimensional Geometry are designed to help students learn different methodologies in which various questions from three dimensional geometry should be solved. Illustrating from daily life examples around us, we can observe that all the things in the real world are in a three-dimensional shape.

Three Dimensional Geometry is a concept which can easily be grasped. Therefore, SimplyAcad has provided these answers which covers all the exercises included in the textbook.

The solutions mentioned below are according to the latest update of the CBSE Syllabus for 2024-25. The solution will help in understanding the concepts of Three Dimensional Geometry thoroughly as the answers are explained in a stepwise manner. NCERT Solutions Class 12 Maths Chapter 11 Three Dimensional Geometry is an extremely important chapter which must be carefully taken from exam point of view.

NCERT Solutions Class 12 Maths Chapter 11 Three Dimensional Geometry Exercise 11.1

PAGE NO: 467

1. If a line makes angles 90°, 135°, 45° with the x, y and z-axes, respectively, find its direction cosines.

Solution:

Let the direction cosines of the line be l, m and n.

Here let α = 90°, β = 135° and γ = 45°

So,

l = cos α, m = cos β and n = cos γ

So, the direction cosines are

l = cos 90° = 0

m = cos 135°= cos (180° – 45°) = -cos 45° = -1/2

n = cos 45° = 1/2

∴ The direction cosines of the line are 0, -1/2, 1/2

2. Find the direction cosines of a line which makes equal angles with the coordinate axes.

Solution:

Given:

Angles are equal.

So, let the angles be α, β, γ

Let the direction cosines of the line be l, m and n.

l = cos α, m = cos β and n = cos γ

Here, given α = β = γ (Since, line makes equal angles with the coordinate axes) … (1)

The direction cosines are

l = cos α, m = cos β and n = cos γ

We have,

l2 + m 2 + n2 = 1

cos2 α + cos2β + cos2γ = 1

From (1) we have,

cos2 α + cos2 α + cos2 α = 1

3 cos2 α = 1

Cos α = ± √(1/3)

∴ The direction cosines are

l = ± √(1/3), m = ± √(1/3), n = ± √(1/3)

3. If a line has the direction ratios –18, 12, –4, then what are its direction cosines?

Solution:

Given:

Direction ratios as -18, 12, -4

Where, a = -18, b = 12, c = -4

Let us consider the direction ratios of the line as a, b and c

Then the direction cosines are

NCERT Solutions for Class 12 Maths Chapter 11 –Three Dimensional Geometry image - 1

∴ The direction cosines are

-18/22, 12/22, -4/22 => -9/11, 6/11, -2/11

4. Show that the points (2, 3, 4), (–1, –2, 1), (5, 8, 7) are collinear.

Solution:

If the direction ratios of two lines segments are proportional, then the lines are collinear.

Given:

A(2, 3, 4), B(−1, −2, 1), C(5, 8, 7)

Direction ratio of line joining A (2, 3, 4) and B (−1, −2, 1), are

(−1−2), (−2−3), (1−4) = (−3, −5, −3)

Where, a1 = -3, b1 = -5, c1 = -3

Direction ratio of line joining B (−1, −2, 1) and C (5, 8, 7) are

(5− (−1)), (8− (−2)), (7−1) = (6, 10, 6)

Where, a2 = 6, b2 = 10 and c2 =6

Now,

NCERT Solutions for Class 12 Maths Chapter 11 –Three Dimensional Geometry image - 2

∴ A, B, C are collinear.

5. Find the direction cosines of the sides of the triangle whose vertices are (3, 5, –4), (-1, 1, 2) and (–5, –5, –2).

Solution:

Given:

The vertices are (3, 5, –4), (-1, 1, 2) and (–5, –5, –2).

NCERT Solutions for Class 12 Maths Chapter 11 –Three Dimensional Geometry image - 3

The direction cosines of the two points passing through A(x1, y1, z1) and B(x2, y2, z2) is given by (x2 – x1), (y2-y1), (z2-z1)

Firstly let us find the direction ratios of AB

Where, A = (3, 5, -4) and B = (-1, 1, 2)

Ratio of AB = [(x2 – x1)2, (y2 – y1)2, (z2 – z1)2]

= (-1-3), (1-5), (2-(-4)) = -4, -4, 6

Then by using the formula,

√[(x2 – x1)2 + (y2 – y1)2 + (z2 – z1)2]

√[(-4)2 + (-4)2 + (6)2] = √(16+16+36)

= √68

= 2√17

Now let us find the direction cosines of the line AB

By using the formula,

NCERT Solutions for Class 12 Maths Chapter 11 –Three Dimensional Geometry image - 4

-4/2√17 , -4/2√17, 6/2√17

Or -2/√17, -2/√17, 3/√17

Similarly,

Let us find the direction ratios of BC

Where, B = (-1, 1, 2) and C = (-5, -5, -2)

Ratio of AB = [(x2 – x1)2, (y2 – y1)2, (z2 – z1)2]

= (-5+1), (-5-1), (-2-2) = -4, -6, -4

Then by using the formula,

√[(x2 – x1)2 + (y2 – y1)2 + (z2 – z1)2]

√[(-4)2 + (-6)2 + (-4)2] = √(16+36+16)

= √68

= 2√17

Now, let us find the direction cosines of the line AB

By using the formula,

NCERT Solutions for Class 12 Maths Chapter 11 –Three Dimensional Geometry image - 5

-4/2√17, -6/2√17, -4/2√17

Or -2/√17, -3/√17, -2/√17

Similarly,

Let us find the direction ratios of CA

Where, C = (-5, -5, -2) and A = (3, 5, -4)

Ratio of AB = [(x2 – x1)2, (y2 – y1)2, (z2 – z1)2]

= (3+5), (5+5), (-4+2) = 8, 10, -2

Then, by using the formula,

√[(x2 – x1)2 + (y2 – y1)2 + (z2 – z1)2]

√[(8)2 + (10)2 + (-2)2] = √(64+100+4)

= √168

= 2√42

Now, let us find the direction cosines of the line AB

By using the formula,

NCERT Solutions for Class 12 Maths Chapter 11 –Three Dimensional Geometry image - 6

8/2√42, 10/2√42, -2/2√42

Or 4/√42, 5/√42, -1/√42

NCERT Solutions Class 12 Maths Chapter 11 Three Dimensional Geometry Exercise 11.2

PAGE NO: 477

1. Show that the three lines with direction cosines

NCERT Solutions for Class 12 Maths Chapter 11 –Three Dimensional Geometry image - 7 Are mutually perpendicular.

Solution:

Let us consider the direction cosines of L1, L2 and L3 be l1, m1, n1; l2, m2, n2 and l3, m3, n3.

We know that

If l1, m1, n1 and l2, m2, n2 are the direction cosines of two lines,

And θ is the acute angle between the two lines,

Then cos θ = |l1l2 + m1m2 + n1n2|

If two lines are perpendicular, then the angle between the two is θ = 90°

For perpendicular lines, | l1l2 + m1m2 + n1n2 | = cos 90° = 0, i.e. | l1l2 + m1m2 + n1n2 | = 0

So, in order to check if the three lines are mutually perpendicular, we compute | l1l2 + m1m2 + n1n2 | for all the pairs of the three lines.

Firstly let us compute, | l1l2 + m1m2 + n1n2 |

NCERT Solutions for Class 12 Maths Chapter 11 –Three Dimensional Geometry image - 8

NCERT Solutions for Class 12 Maths Chapter 11 –Three Dimensional Geometry image - 9

So, L1⊥ L2 …… (1)

Similarly,

Let us compute, | l2l3 + m2m3 + n2n3 |

NCERT Solutions for Class 12 Maths Chapter 11 –Three Dimensional Geometry image - 10

NCERT Solutions for Class 12 Maths Chapter 11 –Three Dimensional Geometry image - 11

So, L2⊥ L3 ….. (2)

Similarly,

Let us compute, | l3l1 + m3m1 + n3n1 |

NCERT Solutions for Class 12 Maths Chapter 11 –Three Dimensional Geometry image - 12

NCERT Solutions for Class 12 Maths Chapter 11 –Three Dimensional Geometry image - 13

So, L1⊥ L3 ….. (3)

∴ By (1), (2) and (3), the lines are perpendicular.

L1, L2 and L3 are mutually perpendicular.

2. Show that the line through the points (1, –1, 2), (3, 4, –2) is perpendicular to the line through the points (0, 3, 2) and (3, 5, 6).

Solution:

Given:

The points (1, –1, 2), (3, 4, –2) and (0, 3, 2), (3, 5, 6).

Let us consider AB be the line joining the points, (1, -1, 2) and (3, 4, -2), and CD be the line through the points (0, 3, 2) and (3, 5, 6).

Now,

The direction ratios, a1, b1, c1 of AB are

(3 – 1), (4 – (-1)), (-2 – 2) = 2, 5, -4.

Similarly,

The direction ratios, a2, b2, c2 of CD are

(3 – 0), (5 – 3), (6 – 2) = 3, 2, 4.

Then, AB and CD will be perpendicular to each other, if a1a2 + b1b2 + c1c2 = 0

a1a2 + b1b2 + c1c2 = 2(3) + 5(2) + 4(-4)

= 6 + 10 – 16

= 0

∴ AB and CD are perpendicular to each other.

3. Show that the line through the points (4, 7, 8), (2, 3, 4) is parallel to the line through the points (–1, –2, 1), (1, 2, 5).

Solution:

Given:

The points (4, 7, 8), (2, 3, 4) and (–1, –2, 1), (1, 2, 5).

Let us consider AB to be the line joining the points, (4, 7, 8), (2, 3, 4) and CD to be the line through the points (–1, –2, 1), (1, 2, 5).

Now,

The direction ratios, a1, b1, c1 of AB are

(2 – 4), (3 – 7), (4 – 8) = -2, -4, -4.

The direction ratios, a2, b2, c2 of CD are

(1 – (-1)), (2 – (-2)), (5 – 1) = 2, 4, 4.

Then, AB will be parallel to CD, if

NCERT Solutions for Class 12 Maths Chapter 11 –Three Dimensional Geometry image - 14

So, a1/a2 = -2/2 = -1

b1/b2 = -4/4 = -1

c1/c2 = -4/4 = -1

∴ We can say that,

NCERT Solutions for Class 12 Maths Chapter 11 –Three Dimensional Geometry image - 15

-1 = -1 = -1

Hence, AB is parallel to CD where the line through the points (4, 7, 8), (2, 3, 4) is parallel to the line through the points (–1, –2, 1), (1, 2, 5)

4. Find the equation of the line which passes through the point (1, 2, 3) and is parallel to the vector NCERT Solutions for Class 12 Maths Chapter 11 –Three Dimensional Geometry image - 16.

Solution:

NCERT Solutions for Class 12 Maths Chapter 11 –Three Dimensional Geometry image - 17

5. Find the equation of the line in vector and in Cartesian form that passes through the point with position vector NCERT Solutions for Class 12 Maths Chapter 11 –Three Dimensional Geometry image - 18and NCERT Solutions for Class 12 Maths Chapter 11 –Three Dimensional Geometry image - 19 is in the direction

Solution:

NCERT Solutions for Class 12 Maths Chapter 11 –Three Dimensional Geometry image - 20

6. Find the Cartesian equation of the line which passes through the point (–2, 4, –5) and parallel to the line given by

NCERT Solutions for Class 12 Maths Chapter 11 –Three Dimensional Geometry image - 21

Solution:

Given:

The points (-2, 4, -5)

We know that the Cartesian equation of a line through a point (x1, y1, z1) and having direction ratios a, b, c is

NCERT Solutions for Class 12 Maths Chapter 11 –Three Dimensional Geometry image - 22

7. The Cartesian equation of a line is

NCERT Solutions for Class 12 Maths Chapter 11 –Three Dimensional Geometry image - 23. Write its vector form.

Solution:

NCERT Solutions for Class 12 Maths Chapter 11 –Three Dimensional Geometry image - 24

So when comparing this standard form with the given equation, we get

x1 = 5, y1 = -4, z1 = 6 and

l = 3, m = 7, n = 2

NCERT Solutions for Class 12 Maths Chapter 11 –Three Dimensional Geometry image - 25

8. Find the vector and the Cartesian equations of the lines that passes through the origin and (5, –2, 3).

Solution:

NCERT Solutions for Class 12 Maths Chapter 11 –Three Dimensional Geometry image - 26

NCERT Solutions for Class 12 Maths Chapter 11 –Three Dimensional Geometry image - 27

9. Find the vector and the Cartesian equations of the line that passes through the points (3, –2, –5), (3, –2, 6).

Solution:

NCERT Solutions for Class 12 Maths Chapter 11 –Three Dimensional Geometry image - 28

NCERT Solutions for Class 12 Maths Chapter 11 –Three Dimensional Geometry image - 29

10. Find the angle between the following pairs of lines:
NCERT Solutions for Class 12 Maths Chapter 11 –Three Dimensional Geometry image - 30

Solution:

NCERT Solutions for Class 12 Maths Chapter 11 –Three Dimensional Geometry image - 31

NCERT Solutions for Class 12 Maths Chapter 11 –Three Dimensional Geometry image - 32

So,

NCERT Solutions for Class 12 Maths Chapter 11 –Three Dimensional Geometry image - 33

NCERT Solutions for Class 12 Maths Chapter 11 –Three Dimensional Geometry image - 34

By (3), we have

NCERT Solutions for Class 12 Maths Chapter 11 –Three Dimensional Geometry image - 35

NCERT Solutions for Class 12 Maths Chapter 11 –Three Dimensional Geometry image - 36

11. Find the angle between the following pair of lines:
NCERT Solutions for Class 12 Maths Chapter 11 –Three Dimensional Geometry image - 37

Solution:

NCERT Solutions for Class 12 Maths Chapter 11 –Three Dimensional Geometry image - 38

NCERT Solutions for Class 12 Maths Chapter 11 –Three Dimensional Geometry image - 39

NCERT Solutions for Class 12 Maths Chapter 11 –Three Dimensional Geometry image - 40

NCERT Solutions for Class 12 Maths Chapter 11 –Three Dimensional Geometry image - 41

12. Find the values of p so that the lines

NCERT Solutions for Class 12 Maths Chapter 11 –Three Dimensional Geometry image - 42 are at right angles.

Solution:

NCERT Solutions for Class 12 Maths Chapter 11 –Three Dimensional Geometry image - 43

So, the direction ratios of the lines are

-3, 2p/7, 2 and -3p/7, 1, -5

Now, as both the lines are at right angles,

So, a1a2 + b1b2 + c1c2 = 0

(-3) (-3p/7) + (2p/7) (1) + 2 (-5) = 0

9p/7 + 2p/7 – 10 = 0

(9p+2p)/7 = 10

11p/7 = 10

11p = 70

p = 70/11

∴ The value of p is 70/11

13. Show that the lines

NCERT Solutions for Class 12 Maths Chapter 11 –Three Dimensional Geometry image - 44 are perpendicular to each other.

Solution:

The equations of the given lines are

NCERT Solutions for Class 12 Maths Chapter 11 –Three Dimensional Geometry image - 45

Two lines with direction ratios is given as

a1a2 + b1b2 + c1c2 = 0

So the direction ratios of the given lines are 7, -5, 1 and 1, 2, 3

i.e., a1 = 7, b1 = -5, c1 = 1 and

a2 = 1, b2 = 2, c2 = 3

Now, considering

a1a2 + b1b2 + c1c2 = 7 × 1 + (-5) × 2 + 1 × 3

= 7 -10 + 3

= – 3 + 3

= 0

∴ The two lines are perpendicular to each other.

14. Find the shortest distance between the lines
NCERT Solutions for Class 12 Maths Chapter 11 –Three Dimensional Geometry image - 46

Solution:

NCERT Solutions for Class 12 Maths Chapter 11 –Three Dimensional Geometry image - 47

NCERT Solutions for Class 12 Maths Chapter 11 –Three Dimensional Geometry image - 48

NCERT Solutions for Class 12 Maths Chapter 11 –Three Dimensional Geometry image - 49

Let us rationalizing the fraction by multiplying the numerator and denominator by √2, we get

NCERT Solutions for Class 12 Maths Chapter 11 –Three Dimensional Geometry image - 50

∴ The shortest distance is 32/2

15. Find the shortest distance between the lines
NCERT Solutions for Class 12 Maths Chapter 11 –Three Dimensional Geometry image - 51

Solution:

NCERT Solutions for Class 12 Maths Chapter 11 –Three Dimensional Geometry image - 52

NCERT Solutions for Class 12 Maths Chapter 11 –Three Dimensional Geometry image - 53

NCERT Solutions for Class 12 Maths Chapter 11 –Three Dimensional Geometry image - 54

NCERT Solutions for Class 12 Maths Chapter 11 –Three Dimensional Geometry image - 55

∴ The shortest distance is 229

16. Find the shortest distance between the lines whose vector equations are
NCERT Solutions for Class 12 Maths Chapter 11 –Three Dimensional Geometry image - 56

Solution:

NCERT Solutions for Class 12 Maths Chapter 11 –Three Dimensional Geometry image - 57

Here by comparing the equations we get,

NCERT Solutions for Class 12 Maths Chapter 11 –Three Dimensional Geometry image - 58

NCERT Solutions for Class 12 Maths Chapter 11 –Three Dimensional Geometry image - 59

∴ The shortest distance is 319

17. Find the shortest distance between the lines whose vector equations are

NCERT Solutions for Class 12 Maths Chapter 11 –Three Dimensional Geometry image - 60

Solution:

NCERT Solutions for Class 12 Maths Chapter 11 –Three Dimensional Geometry image - 61

NCERT Solutions for Class 12 Maths Chapter 11 –Three Dimensional Geometry image - 62

And,

NCERT Solutions for Class 12 Maths Chapter 11 –Three Dimensional Geometry image - 63

∴ The shortest distance is 829

NCERT Solutions Class 12 Maths Chapter 11 Three Dimensional Geometry Exercise 11.3

PAGE NO: 493

1. In each of the following cases, determine the direction cosines of the normal to the plane and the distance from the origin.
(a) z = 2

(b) x + y + z = 1

(c) 2x + 3y – z = 5

(d) 5y + 8 = 0

Solution:

(a) z = 2

Given:

The equation of the plane, z = 2 or 0x + 0y + z = 2 …. (1)

Direction ratio of the normal (0, 0, 1)

By using the formula,

[(0)2 + (0)2 + (1)2] = 1

= 1

Now,

Divide both the sides of equation (1) by 1, we get

0x/(1) + 0y/(1) + z/1 = 2

So this is of the form lx + my + nz = d

Where, l, m, n are the direction cosines and d is the distance

∴ The direction cosines are 0, 0, 1

Distance (d) from the origin is 2 units

(b) x + y + z = 1

Given:

The equation of the plane, x + y + z = 1…. (1)

Direction ratio of the normal (1, 1, 1)

By using the formula,

[(1)2 + (1)2 + (1)2] = 3

Now,

Divide both the sides of equation (1) by 3, we get

x/(3) + y/(3) + z/(3) = 1/3

So this is of the form lx + my + nz = d

Where, l, m, n are the direction cosines and d is the distance

∴ The direction cosines are 1/3, 1/3, 1/3

Distance (d) from the origin is 1/3 units

(c) 2x + 3y – z = 5

Given:

The equation of the plane, 2x + 3y – z = 5…. (1)

Direction ratio of the normal (2, 3, -1)

By using the formula,

[(2)2 + (3)2 + (-1)2] = 14

Now,

Divide both the sides of equation (1) by 14, we get

2x/(14) + 3y/(14) – z/(14) = 5/14

So this is of the form lx + my + nz = d

Where, l, m, n are the direction cosines and d is the distance

∴ The direction cosines are 2/14, 3/14, -1/14

Distance (d) from the origin is 5/14 units

(d) 5y + 8 = 0

Given:

The equation of the plane, 5y + 8 = 0

-5y = 8 or

0x – 5y + 0z = 8…. (1)

Direction ratio of the normal (0, -5, 0)

By using the formula,

[(0)2 + (-5)2 + (0)2] = 25

= 5

Now,

Divide both the sides of equation (1) by 5, we get

0x/(5) – 5y/(5) – 0z/(5) = 8/5

So this is of the form lx + my + nz = d

Where, l, m, n are the direction cosines and d is the distance

∴ The direction cosines are 0, -1, 0

Distance (d) from the origin is 8/5 units

2. Find the vector equation of a plane which is at a distance of 7 units from the origin and normal to the vector

NCERT Solutions for Class 12 Maths Chapter 11 image - 64

Solution:

NCERT Solutions for Class 12 Maths Chapter 11 image - 65

NCERT Solutions for Class 12 Maths Chapter 11 image - 66

3. Find the Cartesian equation of the following planes:
(a) NCERT Solutions for Class 12 Maths Chapter 11 image - 67

Solution:

Given:

The equation of the plane.

NCERT Solutions for Class 12 Maths Chapter 11 image - 68

NCERT Solutions for Class 12 Maths Chapter 11 image - 69

NCERT Solutions for Class 12 Maths Chapter 11 image - 70

NCERT Solutions for Class 12 Maths Chapter 11 image - 71

4. In the following cases, find the coordinates of the foot of the perpendicular drawn from the origin.
(a) 2x + 3y + 4z – 12 = 0

(b) 3y + 4z – 6 = 0

(c) x + y + z = 1

(d) 5y + 8 = 0

Solution:

(a) 2x + 3y + 4z – 12 = 0

Let the coordinate of the foot of ⊥ P from the origin to the given plane be P(x, y, z).

2x + 3y + 4z = 12 …. (1)

Direction ratio are (2, 3, 4)

[(2)2 + (3)2 + (4)2] = (4 + 9 + 16)

= 29

Now,

Divide both the sides of equation (1) by 29, we get

2x/(29) + 3y/(29) + 4z/(29) = 12/29

So this is of the form lx + my + nz = d

Where, l, m, n are the direction cosines and d is the distance

∴ The direction cosines are 2/29, 3/29, 4/29

Coordinate of the foot (ld, md, nd) =

= [(2/29) (12/29), (3/29) (12/29), (4/29) (12/29)]

= 24/29, 36/29, 48/29

(b) 3y + 4z – 6 = 0

Let the coordinate of the foot of ⊥ P from the origin to the given plane be P(x, y, z).

0x + 3y + 4z = 6 …. (1)

Direction ratio are (0, 3, 4)

[(0)2 + (3)2 + (4)2] = (0 + 9 + 16)

= 25

= 5

Now,

Divide both the sides of equation (1) by 5, we get

0x/(5) + 3y/(5) + 4z/(5) = 6/5

So this is of the form lx + my + nz = d

Where, l, m, n are the direction cosines and d is the distance

∴ The direction cosines are 0/5, 3/5, 4/5

Coordinate of the foot (ld, md, nd) =

= [(0/5) (6/5), (3/5) (6/5), (4/5) (6/5)]

= 0, 18/25, 24/25

(c) x + y + z = 1

Let the coordinate of the foot of ⊥ P from the origin to the given plane be P(x, y, z).

x + y + z = 1 …. (1)

Direction ratio are (1, 1, 1)

[(1)2 + (1)2 + (1)2] = (1 + 1 + 1)

= 3

Now,

Divide both the sides of equation (1) by 3, we get

1x/(3) + 1y/(3) + 1z/(3) = 1/3

So this is of the form lx + my + nz = d

Where, l, m, n are the direction cosines and d is the distance

∴ The direction cosines are 1/3, 1/3, 1/3

Coordinate of the foot (ld, md, nd) =

= [(1/3) (1/3), (1/3) (1/3), (1/3) (1/3)]

= 1/3, 1/3, 1/3

(d) 5y + 8 = 0

Let the coordinate of the foot of ⊥ P from the origin to the given plane be P(x, y, z).

0x – 5y + 0z = 8 …. (1)

Direction ratio are (0, -5, 0)

[(0)2 + (-5)2 + (0)2] = (0 + 25 + 0)

= 25

= 5

Now,

Divide both the sides of equation (1) by 5, we get

0x/(5) – 5y/(5) + 0z/(5) = 8/5

So this is of the form lx + my + nz = d

Where, l, m, n are the direction cosines and d is the distance

∴ The direction cosines are 0, -1, 0

Coordinate of the foot (ld, md, nd) =

= [(0/5) (8/5), (-5/5) (8/5), (0/5) (8/5)]

= 0, -8/5, 0

5. Find the vector and Cartesian equations of the planes

(a) that passes through the point (1, 0, –2) and the normal to the plane is

NCERT Solutions for Class 12 Maths Chapter 11 image - 72

(b) that passes through the point (1,4, 6) and the normal vector to the plane is

NCERT Solutions for Class 12 Maths Chapter 11 image - 73

Solution:

NCERT Solutions for Class 12 Maths Chapter 11 image - 74

x – 1 – 2y + 8 + z – 6 = 0

x – 2y + z + 1 = 0

x – 2y + z = -1

∴ The required Cartesian equation of the plane is x – 2y + z = -1

NCERT Solutions for Class 12 Maths Chapter 11 image - 75

NCERT Solutions for Class 12 Maths Chapter 11 image - 76

x – 1 – 2y + 8 + z – 6 = 0

x – 2y + z + 1 = 0

x – 2y + z = -1

∴ The required Cartesian equation of the plane is x – 2y + z = -1

6. Find the equations of the planes that passes through three points.
(a) (1, 1, –1), (6, 4, –5), (–4, –2, 3)

(b) (1, 1, 0), (1, 2, 1), (–2, 2, –1)

Solution:

Given:

The points are (1, 1, -1), (6, 4, -5), (-4, -2, 3).

Let,

NCERT Solutions for Class 12 Maths Chapter 11 image - 77

= 1(12 – 10) – 1(18 – 20) -1 (-12 + 16)

= 2 + 2 – 4

= 0

Since, the value of determinant is 0.

∴ The points are collinear as there will be infinite planes passing through the 3 given points.

(b) (1, 1, 0), (1, 2, 1), (–2, 2, –1)

NCERT Solutions for Class 12 Maths Chapter 11 image - 78

NCERT Solutions for Class 12 Maths Chapter 11 image - 79

7. Find the intercepts cut off by the plane 2x + y – z = 5.

Solution:

Given:

The plane 2x + y – z = 5

Let us express the equation of the plane in intercept form

x/a + y/b + z/c = 1

Where a, b, c are the intercepts cut-off by the plane at x, y and z axes, respectively.

2x + y – z = 5 …. (1)

Now dividing both the sides of equation (1) by 5, we get

2x/5 + y/5 – z/5 = 5/5

2x/5 + y/5 – z/5 = 1

x/(5/2) + y/5 + z/(-5) = 1

Here, a = 5/2, b = 5 and c = -5

∴ The intercepts cut-off by the plane are 5/2, 5 and -5.

8. Find the equation of the plane with intercept 3 on the y-axis and parallel to ZOX plane.

Solution:

We know that the equation of the plane ZOX is y = 0

So, the equation of plane parallel to ZOX is of the form, y = a

Since the y-intercept of the plane is 3, a = 3

∴ The required equation of the plane is y = 3

9. Find the equation of the plane through the intersection of the planes 3x – y + 2z – 4 = 0 and x + y + z – 2 = 0 and the point (2, 2, 1).

Solution:

Given:

Equation of the plane passes through the intersection of the plane is given by

(3x – y + 2z – 4) + λ (x + y + z – 2) = 0 and the plane passes through the points (2, 2, 1).

So, (3 × 2 – 2 + 2 × 1 – 4) + λ (2 + 2 + 1 – 2) = 0

2 + 3λ = 0

3λ = -2

λ = -2/3 …. (1)

Upon simplification, the required equation of the plane is given as

(3x – y + 2z – 4) – 2/3 (x + y + z – 2) = 0

(9x – 3y + 6z – 12 – 2x – 2y – 2z + 4)/3 = 0

7x – 5y + 4z – 8 = 0

∴ The required equation of the plane is 7x – 5y + 4z – 8 = 0

10. Find the vector equation of the plane passing through the intersection of the planes NCERT Solutions for Class 12 Maths Chapter 11 image - 80 and through the point (2, 1, 3).

Solution:

NCERT Solutions for Class 12 Maths Chapter 11 image - 81

The equation of any plane through the intersection of the planes given in equations (1) and (2) is given by,

NCERT Solutions for Class 12 Maths Chapter 11 image - 82

NCERT Solutions for Class 12 Maths Chapter 11 image - 83

11. Find the equation of the plane through the line of intersection of the planes x + y + z = 1 and 2x + 3y + 4z = 5 which is perpendicular to the plane x – y + z = 0.

Solution:

Let the equation of the plane that passes through the two-given planes

x + y + z = 1 and 2x + 3y + 4z = 5 is

(x + y + z – 1) + λ (2x + 3y + 4z – 5) = 0

(2λ + 1) x + (3λ + 1) y + (4λ + 1) z -1 – 5λ = 0…… (1)

So the direction ratio of the plane is (2λ + 1, 3λ + 1, 4λ + 1)

And direction ratio of another plane is (1, -1, 1)

Since, both the planes are ⊥

So by substituting in a1a2 + b1b2 + c1c2 = 0

(2λ + 1 × 1) + (3λ + 1 × (-1)) + (4λ + 1 × 1) = 0

2λ + 1 – 3λ – 1 + 4λ + 1 = 0

3λ + 1 = 0

λ = -1/3

Substitute the value of λ in equation (1) we get,

NCERT Solutions for Class 12 Maths Chapter 11 image - 84

x – z + 2 = 0

∴ The required equation of the plane is x – z + 2 = 0

12. Find the angle between the planes whose vector equations are

NCERT Solutions for Class 12 Maths Chapter 11 image - 85

Solution:

NCERT Solutions for Class 12 Maths Chapter 11 image - 86

NCERT Solutions for Class 12 Maths Chapter 11 image - 87

13. In the following cases, determine whether the given planes are parallel or perpendicular, and in case they are neither, find the angles between them.
(a) 7x + 5y + 6z + 30 = 0 and 3x – y – 10z + 4 = 0

(b) 2x + y + 3z – 2 = 0 and x – 2y + 5 = 0

(c) 2x – 2y + 4z + 5 = 0 and 3x – 3y + 6z – 1 = 0

(d) 2x – 2y + 4z + 5 = 0 and 3x – 3y + 6z – 1 = 0

(e) 4x + 8y + z – 8 = 0 and y + z – 4 = 0

Solution:

(a) 7x + 5y + 6z + 30 = 0 and 3x – y – 10z + 4 = 0

Given:

The equation of the given planes are

7x + 5y + 6z + 30 = 0 and 3x – y – 10z + 4 = 0

Two planes are ⊥ if the direction ratio of the normal to the plane is

a1a2 + b1b2 + c1c2 = 0

21 – 5 – 60

-44 ≠ 0

Both the planes are not ⊥ to each other.

Now, two planes are || to each other if the direction ratio of the normal to the plane is

NCERT Solutions for Class 12 Maths Chapter 11 image - 88

NCERT Solutions for Class 12 Maths Chapter 11 image - 89

∴ The angle is cos-1 (2/5)

(b) 2x + y + 3z – 2 = 0 and x – 2y + 5 = 0

Given:

The equation of the given planes are

2x + y + 3z – 2 = 0 and x – 2y + 5 = 0

Two planes are ⊥ if the direction ratio of the normal to the plane is

a1a2 + b1b2 + c1c2 = 0

2 × 1 + 1 × (-2) + 3 × 0

= 0

∴ The given planes are ⊥ to each other.

(c) 2x – 2y + 4z + 5 = 0 and 3x – 3y + 6z – 1 = 0

Given:

The equation of the given planes are

2x – 2y + 4z + 5 =0 and x – 2y + 5 = 0

We know that, two planes are ⊥ if the direction ratio of the normal to the plane is

a1a2 + b1b2 + c1c2 = 0

6 + 6 + 24

36 ≠ 0

∴ Both the planes are not ⊥ to each other.

Now let us check, both planes are || to each other if the direction ratio of the normal to the plane is

NCERT Solutions for Class 12 Maths Chapter 11 image - 90

∴ The given planes are || to each other.

(d) 2x – 2y + 4z + 5 = 0 and 3x – 3y + 6z – 1 = 0

Given:

The equation of the given planes are

2x – y + 3z – 1 = 0 and 2x – y + 3z + 3 = 0

We know that, two planes are ⊥ if the direction ratio of the normal to the plane is

a1a2 + b1b2 + c1c2 = 0

2 × 2 + (-1) × (-1) + 3 × 3

14 ≠ 0

∴ Both the planes are not ⊥ to each other.

Now, let us check two planes are || to each other if the direction ratio of the normal to the plane is

NCERT Solutions for Class 12 Maths Chapter 11 image - 91

∴ The given planes are || to each other.

(e) 4x + 8y + z – 8 = 0 and y + z – 4 = 0

Given:

The equation of the given planes are

4x + 8y + z – 8 = 0 and y + z – 4 = 0

We know that, two planes are ⊥ if the direction ratio of the normal to the plane is

a1a2 + b1b2 + c1c2 = 0

0 + 8 + 1

9 ≠ 0

∴ Both the planes are not ⊥ to each other.

Now let us check, two planes are || to each other if the direction ratio of the normal to the plane is

NCERT Solutions for Class 12 Maths Chapter 11 image - 92

∴ Both the planes are not || to each other.

Now let us find the angle between them, which is given as

NCERT Solutions for Class 12 Maths Chapter 11 image - 93

∴ The angle is 45o.

14. In the following cases, find the distance of each of the given points from the corresponding given plane.
Point Plane
(a) (0, 0, 0) 3x – 4y + 12 z = 3

(b) (3, -2, 1) 2x – y + 2z + 3 = 0

(c) (2, 3, -5) x + 2y – 2z = 9

(d) (-6, 0, 0) 2x – 3y + 6z – 2 = 0

Solution:

(a) Point Plane

(0, 0, 0) 3x – 4y + 12 z = 3

We know that, distance of point P(x1, y1, z1) from the plane Ax + By + Cz – D = 0 is given as:

NCERT Solutions for Class 12 Maths Chapter 11 image - 94

Given point is (0, 0, 0) and the plane is 3x – 4y + 12z = 3

NCERT Solutions for Class 12 Maths Chapter 11 image - 95

= |3/169|

= 3/13

∴ The distance is 3/13.

(b) Point Plane

(3, -2, 1) 2x – y + 2z + 3 = 0

We know that, distance of point P(x1, y1, z1) from the plane Ax + By + Cz – D = 0 is given as:

NCERT Solutions for Class 12 Maths Chapter 11 image - 96

Given point is (3, -2, 1) and the plane is 2x – y + 2z + 3 = 0

NCERT Solutions for Class 12 Maths Chapter 11 image - 97

= |13/9|

= 13/3

∴ The distance is 13/3.

(c) Point Plane

(2, 3, -5) x + 2y – 2z = 9

We know that, distance of point P(x1, y1, z1) from the plane Ax + By + Cz – D = 0 is given as:

NCERT Solutions for Class 12 Maths Chapter 11 image - 98

Given point is (2, 3, -5) and the plane is x + 2y – 2z = 9

NCERT Solutions for Class 12 Maths Chapter 11 image - 99

= |9/9|

= 9/3

= 3

∴ The distance is 3.

(d) Point Plane

(-6, 0, 0) 2x – 3y + 6z – 2 = 0

We know that, distance of point P(x1, y1, z1) from the plane Ax + By + Cz – D = 0 is given as:

NCERT Solutions for Class 12 Maths Chapter 11 image - 100

Given point is (-6, 0, 0) and the plane is 2x – 3y + 6z – 2 = 0

NCERT Solutions for Class 12 Maths Chapter 11 image - 101

= |14/49|

= 14/7

= 2

∴ The distance is 2.

NCERT Solutions Class 12 Maths Chapter 11 Three Dimensional Geometry Miscellaneous Exercise

PAGE NO: 497

1. Show that the line joining the origin to the point (2, 1, 1) is perpendicular to the line determined by the points (3, 5, –1), (4, 3, –1).

Solution:

Let us consider OA to be the line joining the origin (0, 0, 0) and the point A (2, 1, 1).

And let BC be the line joining the points B (3, 5, −1) and C (4, 3, −1)

So the direction ratios of OA = (a1, b1, c1) ≡ [(2 – 0), (1 – 0), (1 – 0)] ≡ (2, 1, 1)

And the direction ratios of BC = (a2, b2, c2) ≡ [(4 – 3), (3 – 5), (-1 + 1)] ≡ (1, -2, 0)

Given:

OA is ⊥ to BC

Now we have to prove that:

a1a2 + b1b2 + c1c2 = 0

Let us consider LHS: a1a2 + b1b2 + c1c2

a1a2 + b1b2 + c1c2 = 2 × 1 + 1 × (−2) + 1 × 0

= 2 – 2

= 0

We know that R.H.S is 0

So LHS = RHS

∴ OA is ⊥ to BC

Hence proved.

2. If l1, m1, n1 and l2, m2, n2 are the direction cosines of two mutually perpendicular lines, show that the direction cosines of the line perpendicular to both of these are (m1n2 – m2n1), (n1l2 – n2l1), (l1m2 – l2m1)

Solution:

Let us consider l, m, n to be the direction cosines of the line perpendicular to each of the given lines.

Then, ll1 + mm1 + nn1 = 0 … (1)

And ll2 + mm2 + nn2 = 0 … (2)

Upon solving (1) and (2) by using cross – multiplication, we get

NCERT Solutions for Class 12 Maths Chapter 11 image - 102

Thus, the direction cosines of the given line are proportional to

(m1n2 – m2n1), (n1l2 – n2l1), (l1m2 – l2m1)

So, its direction cosines are

NCERT Solutions for Class 12 Maths Chapter 11 image - 103

NCERT Solutions for Class 12 Maths Chapter 11 image - 104

We know that

(l12 + m12 + n12) (l22 + m22 + n22) – (l1l2 + m1m2 + n1n2)2

= (m1n2 – m2n1)2 + (n1l2 – n2l1)2 + (l1m2 – l2m1)2 … (3)

It is given that the given lines are perpendicular to each other.

So, l1l2 + m1m2 + n1n2 = 0

Also, we have

l12 + m12 + n12 = 1

And, l22 + m22 + n22 = 1

Substituting these values in equation (3), we get

(m1n2 – m2n1)2 + (n1l2 – n2l1)2 + (l1m2 – l2m1)2 = 1

λ = 1

Hence, the direction cosines of the given line are (m1n2 – m2n1), (n1l2 – n2l1), (l1m2 – l2m1)

3. Find the angle between the lines whose direction ratios are a, b, c and b – c, c – a, a – b.

Solution:

Angle between the lines with direction ratios a1, b1, c1 and a2, b2, c2 is given by

NCERT Solutions for Class 12 Maths Chapter 11 image - 105

Given:

a1 = a, b1 = b, c1 = c

a2 = b – c, b2 = c – a, c2 = a – b

Let us substitute the values in the above equation. We get,

NCERT Solutions for Class 12 Maths Chapter 11 image - 106

= 0

Cos θ = 0

So, θ = 90° [Since, cos 90 = 0]

Hence, Angle between the given pair of lines is 90°.

4. Find the equation of a line parallel to x – axis and passing through the origin.

Solution:

We know that, equation of a line passing through (x1, y1, z1) and parallel to a line with direction ratios a, b, c is

NCERT Solutions for Class 12 Maths Chapter 11 image - 107

Given: the line passes through origin i.e. (0, 0, 0)

x1 = 0, y1 = 0, z1 = 0

Since line is parallel to x – axis,

a = 1, b = 0, c = 0

∴ Equation of Line is given by

NCERT Solutions for Class 12 Maths Chapter 11 image - 108

5. If the coordinates of the points A, B, C, D be (1, 2, 3), (4, 5, 7), (–4, 3, –6) and (2, 9, 2), respectively, then find the angle between the lines AB and CD.

Solution:

We know that the angle between the lines with direction ratios a1, b1, c1 and a2, b2, c2 is given by

NCERT Solutions for Class 12 Maths Chapter 11 image - 109

So now, a line passing through A (x1, y1, z1) and B (x2, y2, z2) has direction ratios (x1 – x2), (y1 – y2), (z1 – z2)

The direction ratios of line joining the points A (1, 2, 3) and B (4, 5, 7)

= (4 – 1), (5 – 2), (7 – 3)

= (3, 3, 4)

∴ a1 = 3, b1 = 3, c1 = 4

The direction ratios of line joining the points C (-4, 3, -6) and B (2, 9, 2)

= (2 – (-4)), (9 – 3), (2-(-6))

= (6, 6, 8)

∴ a2 = 6, b2 = 6, c2 = 8

Now let us substitute the values in the above equation. We get,

NCERT Solutions for Class 12 Maths Chapter 11 image - 110

6. If the lines

NCERT Solutions for Class 12 Maths Chapter 11 image - 111 and
NCERT Solutions for Class 12 Maths Chapter 11 image - 112 are perpendicular, find the value of k.

Solution:

NCERT Solutions for Class 12 Maths Chapter 11 image - 113

NCERT Solutions for Class 12 Maths Chapter 11 image - 114

We get –

x2 = 1, y2 = 2, z2 = 3

And a2 = 3k, b2 = 1, c2 = -5

Since the two lines are perpendicular,

a1a2 + b1b2 + c1c2 = 0

(-3) × 3k + 2k × 1 + 2 × (-5) = 0

-9k + 2k – 10 = 0

-7k = 10

k = -10/7

∴ The value of k is -10/7.

7. Find the vector equation of the line passing through (1, 2, 3) and perpendicular to the plane

NCERT Solutions for Class 12 Maths Chapter 11 image - 115

Solution:

NCERT Solutions for Class 12 Maths Chapter 11 image - 116

NCERT Solutions for Class 12 Maths Chapter 11 image - 117

8. Find the equation of the plane passing through (a, b, c) and parallel to the plane

NCERT Solutions for Class 12 Maths Chapter 11 image - 118

Solution:

The equation of a plane passing through (x1, y1, z1) and perpendicular to a line with direction ratios A, B, C is given as

A (x – x1) + B (y – y1) + C (z – z1) = 0

It is given that, the plane passes through (a, b, c)

So, x1 = a, y1 = b, z1 = c

Since both planes are parallel to each other, their normal will be parallel

NCERT Solutions for Class 12 Maths Chapter 11 image - 119

Direction ratios of normal = (1, 1, 1)

So, A = 1, B =1, C = 1

The Equation of plane in Cartesian form is given as

A (x – x1) + B (y – y1) + C (z – z1) = 0

1(x – a) + 1(y – b) + 1(z – c) = 0

x + y + z – (a + b + c) = 0

x + y + z = a + b + c

∴ The required equation of plane is x + y + z = a + b + c

9. Find the shortest distance between lines
NCERT Solutions for Class 12 Maths Chapter 11 image - 120 and NCERT Solutions for Class 12 Maths Chapter 11 image - 121

Solution:

NCERT Solutions for Class 12 Maths Chapter 11 image - 122

NCERT Solutions for Class 12 Maths Chapter 11 image - 123

NCERT Solutions for Class 12 Maths Chapter 11 image - 124

10. Find the coordinates of the point where the line through (5, 1, 6) and (3, 4,1) crosses the YZ – plane.

Solution:

NCERT Solutions for Class 12 Maths Chapter 11 image - 125

NCERT Solutions for Class 12 Maths Chapter 11 image - 126

We know that, two vectors are equal if their corresponding components are equal

So,

0 = 5 – 2λ

5 = 2λ

λ = 5/2

y = 1 + 3λ … (5)

And,

z = 6 – 5λ … (6)

Substituting the value of λ in equation (5) and (6), we get –

y = 1 + 3λ

= 1 + 3 × (5/2)

= 1 + (15/2)

= 17/2

And

z = 6 – 5λ

= 6 – 5 × (5/2)

= 6 – (25/2)

= – 13/2

∴ The coordinates of the required point is (0, 17/2, -13/2).

11. Find the coordinates of the point where the line through (5, 1, 6) and (3, 4, 1) crosses the ZX – plane.

Solution:

NCERT Solutions for Class 12 Maths Chapter 11 image - 127

NCERT Solutions for Class 12 Maths Chapter 11 image - 128

We know that, two vectors are equal if their corresponding components are equal

So,

x = 5 – 2λ … (5)

0 = 1 + 3λ

-1 = 3λ

λ = -1/3

And,

z = 6 – 5λ … (6)

Substituting the value of λ in equation (5) and (6), we get –

x = 5 – 2λ

= 5 – 2 × (-1/3)

= 5 + (2/3)

= 17/3

And

z = 6 – 5λ

= 6 – 5 × (-1/3)

= 6 + (5/3)

= 23/3

∴ The coordinates of the required point is (17/3, 0, 23/3).

12. Find the coordinates of the point where the line through (3, –4, –5) and (2, –3, 1) crosses the plane 2x + y + z = 7.

Solution:

We know that the equation of a line passing through two points A (x1, y1, z1) and B (x2, y2, z2) is given as

NCERT Solutions for Class 12 Maths Chapter 11 image - 129

It is given that the line passes through the points A (3, –4, –5) and B (2, –3, 1)

So, x1 = 3, y1 = -4, z1 = -5

And, x2 = 2, y2 = -3, z2 = 1

Then the equation of line is

NCERT Solutions for Class 12 Maths Chapter 11 image - 130

So, x = -k + 3 |, y = k – 4 |, z = 6k – 5 … (1)

Now let (x, y, z) be the coordinates of the point where the line crosses the given plane 2x + y + z + 7 = 0

By substituting the value of x, y, z in equation (1) in the equation of plane, we get

2x + y + z + 7 = 0

2(-k + 3) + (k – 4) + (6k – 5) = 7

5k – 3 = 7

5k = 10

k = 2

Now substituting the value of k in x, y, z we get,

x = – k + 3 = – 2 + 3 = 1

y = k – 4 = 2 – 4 = – 2

z = 6k – 5 = 12 – 5 = 7

∴ The coordinates of the required point are (1, -2, 7).

13. Find the equation of the plane passing through the point (–1, 3, 2) and perpendicular to each of the planes x + 2y + 3z = 5 and 3x + 3y + z = 0.

Solution:

We know that the equation of a plane passing through (x1, y1, z1) is given by

A (x – x1) + B (y – y1) + C (z – z1) = 0

Where, A, B, C are the direction ratios of normal to the plane.

It is given that the plane passes through (-1, 3, 2)

So, equation of plane is given by

A (x + 1) + B (y – 3) + C (z – 2) = 0 ……… (1)

Since this plane is perpendicular to the given two planes. So, their normal to the plane would be perpendicular to normal of both planes.

We know that

NCERT Solutions for Class 12 Maths Chapter 11 image - 131

So, the required normal is the cross product of normal of planes

x + 2y + 3z = 5 and 3x + 3y + z = 0

NCERT Solutions for Class 12 Maths Chapter 11 image - 132

Hence, the direction ratios are = -7, 8, -3

∴ A = -7, B = 8, C = -3

Substituting the obtained values in equation (1), we get

A (x + 1) + B (y – 3) + C (z – 2) = 0

-7(x + 1) + 8(y – 3) + (-3) (z – 2) = 0

-7x – 7 + 8y – 24 – 3z + 6 = 0

-7x + 8y – 3z – 25 = 0

7x – 8y + 3z + 25 = 0

∴ The equation of the required plane is 7x – 8y + 3z + 25 = 0.

14. If the points (1, 1, p) and (–3, 0, 1) be equidistant from the plane

NCERT Solutions for Class 12 Maths Chapter 11 image - 133, then find the value of p.

Solution:

NCERT Solutions for Class 12 Maths Chapter 11 image - 134

NCERT Solutions for Class 12 Maths Chapter 11 image - 135

20 – 12p = ± 8

20 – 12p = 8 or, 20 – 12p = -8

12p = 12 or, 12p = 28

p = 1 or, p = 7/3

∴ The possible values of p are 1 and 7/3.

15. Find the equation of the plane passing through the line of intersection of the planes NCERT Solutions for Class 12 Maths Chapter 11 image - 136 and NCERT Solutions for Class 12 Maths Chapter 11 image - 137 and parallel to x-axis.

Solution:

NCERT Solutions for Class 12 Maths Chapter 11 image - 138

Since this plane is parallel to the x-axis.

So, the normal vector of the plane (1) will be perpendicular to the x-axis.

The direction ratios of Normal (a1, b1, c1) ≡ [(1 – 2λ), (1 – 3λ), (1 +)]

The direction ratios of the x–axis (a2, b2, c2) ≡ (1, 0, 0)

Since the two lines are perpendicular,

a1a2 + b1b2 + c1c2 = 0

(1 – 2λ) × 1 + (1 – 3λ) × 0 + (1 + λ) × 0 = 0

(1 – 2λ) = 0

λ = 1/2

Substituting the value of λ in equation (1), we get

NCERT Solutions for Class 12 Maths Chapter 11 image - 139

16. If O be the origin and the coordinates of P be (1, 2, –3), then find the equation of the plane passing through P and perpendicular to OP.

Solution:

We know that the equation of a plane passing through (x1, y1, z1) and perpendicular to a line with direction ratios A, B, C is given as

A(x – x1) + B(y – y1) + C (z – z1) = 0

It is given that the plane passes through P (1, 2, 3)

So, x1 = 1, y1 = 2, z1 = – 3

Normal vector to plane is =

NCERT Solutions for Class 12 Maths Chapter 11 image - 140

Where O (0, 0, 0), P (1, 2, -3)

So, direction ratios of

NCERT Solutions for Class 12 Maths Chapter 11 image - 141 is = (1 – 0), (2 – 0), (-3 – 0)

= (1, 2, – 3)

Where, A = 1, B = 2, C = -3

Equation of plane in Cartesian form is given as

1(x – 1) + 2(y – 2) – 3(z – (-3)) = 0

x – 1 + 2y – 4 – 3z – 9 = 0

x + 2y – 3z – 14 = 0

∴ The equation of the required plane is x + 2y – 3z – 14 = 0

NCERT Solutions for Class 12 Maths Chapter 11 image - 142

Solution:

NCERT Solutions for Class 12 Maths Chapter 11 image - 143

Since this plane is perpendicular to the plane

NCERT Solutions for Class 12 Maths Chapter 11 image - 144

So, the normal vector of the plane (1) will be perpendicular to the normal vector of plane (2).

Direction ratios of the normal of plane (1) = (a1, b1, c1) ≡ [(1 – 2λ), (2 – λ), (3 + λ)]

Direction ratios of the normal of plane (2) = (a2, b2, c2) ≡ (-5, -3, 6)

Since the two lines are perpendicular,

a1a2 + b1b2 + c1c2 = 0

(1 – 2λ) × (-5) + (2 – λ) × (-3) + (3 + λ) × 6 = 0

-5 + 10λ – 6 + 3λ + 18 + 6λ = 0

19λ + 7 = 0

λ = -7/19

By substituting the value of λ in equation (1), we get

NCERT Solutions for Class 12 Maths Chapter 11 image - 145

18. Find the distance of the point (–1, –5, –10) from the point of intersection of the line

NCERT Solutions for Class 12 Maths Chapter 11 image - 146

Solution:

NCERT Solutions for Class 12 Maths Chapter 11 image - 147

Where,

x = 2, y = -1, z = 2

So, the point of intersection is (2, -1, 2).

Now, the distance between points (x1, y1, z1) and (x2, y2, z2) is given by

NCERT Solutions for Class 12 Maths Chapter 11 image - 148

NCERT Solutions for Class 12 Maths Chapter 11 image - 149

∴ The distance is 13 units.

NCERT Solutions for Class 12 Maths Chapter 11 image - 150

NCERT Solutions for Class 12 Maths Chapter 11 image - 151

NCERT Solutions for Class 12 Maths Chapter 11 image - 152

NCERT Solutions for Class 12 Maths Chapter 11 image - 153

20. Find the vector equation of the line passing through the point (1, 2, – 4) and perpendicular to the two lines:
NCERT Solutions for Class 12 Maths Chapter 11 image - 154 and NCERT Solutions for Class 12 Maths Chapter 11 image - 155.

Solution:

NCERT Solutions for Class 12 Maths Chapter 11 image - 156

NCERT Solutions for Class 12 Maths Chapter 11 image - 157

21. Prove that if a plane has the intercepts a, b, c and is at a distance of p units from the origin, then

NCERT Solutions for Class 12 Maths Chapter 11 image - 158

Solution:

NCERT Solutions for Class 12 Maths Chapter 11 image - 159

NCERT Solutions for Class 12 Maths Chapter 11 image - 160

NCERT Solutions for Class 12 Maths Chapter 11 image - 161

22. Distance between the two planes: 2x + 3y + 4z = 4 and 4x + 6y + 8z = 12 is
A. 2 units
B. 4 units
C. 8 units

D. 2/√29 units

Solution:

We know that the distance between two parallel planes Ax + By + Cz = d1 and Ax + By + Cz = d2 is given as

NCERT Solutions for Class 12 Maths Chapter 11 image - 162

It is given that:

First Plane:

2x + 3y + 4z = 4

Let us compare with Ax + By + Cz = d1, we get

A = 2, B = 3, C = 4, d1 = 4

Second Plane:

4x + 6y + 8z = 12 [Divide the equation by 2]

We get,

2x + 3y + 4z = 6

Now comparing with Ax + By + Cz = d1, we get

A = 2, B = 3, C = 4, d2 = 6

So,

Distance between two planes is given as

NCERT Solutions for Class 12 Maths Chapter 11 image - 163

= 2/√29

∴ Option (D) is the correct option.

23. The planes: 2x – y + 4z = 5 and 5x – 2.5y + 10z = 6 are
A. Perpendicular
B. Parallel
C. intersect y–axis
D. passes through

Solution:

It is given that:

First Plane:

2x – y + 4z = 5 [Multiply both sides by 2.5]

We get,

5x – 2.5y + 10z = 12.5 … (1)

Given second Plane:

5x – 2.5y + 10z = 6 … (2)

So,

NCERT Solutions for Class 12 Maths Chapter 11 image - 164

It is clear that the direction ratios of normal of both the plane (1) and (2) are the same.

∴ Both the given planes are parallel.

latest video

news via inbox

Nulla turp dis cursus. Integer liberos  euismod pretium faucibua

Leave A Comment

you might also like